
Metamodels for Auto-Generative Learning Objects

Dedicated to Unix Operating System Disciplines

Ciprian-Bogdan Chirila

Department of Computers and

Information Technology

University Politehnica Timisoara

Timişoara, Romania

E-mail: chirila@cs.upt.ro

Gaultier Parain

University of Lille

Lille, France

E-mail: gaultier.parain@gmail.com

Abstract—The currently developing industry demands more
and more IT specialists day by day. Many industrial systems
are automated using servers based on Unix and Linux operating
systems in industries like: automotive, telecommunications, pro-
duction etc. Universities and other teaching organizations tend
to lack human resources since most of the potential tutors are
already employed in the IT industry having significant beneficial
packages. In this context cloud enabled auto-generative learning
objects can help in the process of training of new IT specialists.
They offer the possibility to reuse learning patterns and to
fill them with randomly generated but controlled data. Thus,
students can learn, exercise and auto-assess their knowledge in
Unix commands to be ready for employment in the IT industry.

Keywords—generative learning objects, auto-generative learn-
ing objects, Unix / Linux operating systems, cloud applications

I. INTRODUCTION

The current industrial revolution entitled Cyber Physical

Systems relies heavily on computing machines. Companies

were built and people were hired in this sense, to provide IT

services to the growing industry: plants, satellites, communica-

tion networks etc. With the widespread and growing bandwidth

of the Internet the possibility of providing these IT support

services from remote increased. For example, IT specialists

from Romania are able to provide IT services to industrial

businesses from all over the world through the Internet. The

services provided by the IT companies rely on the good knowl-

edge of the Unix and Linux operating systems commands.

Because the IT services business is growing fast companies

in the field re-target graduates from technical faculties from

domains, like constructions - where the employment rate is not

very high, towards the IT services industry. Universities and

companies from our region lack tutors because most of them

went in the industrial IT sector where the beneficial packages

and consistent. For example, in some universities the workload

of each tutor is doubled in order to be able to teach the high

number of incoming students demanded by the IT industry.

Generative learning objects (GLOs) are reusable templates

that can be filled with content having a clear learning objec-

tive [2]. The content can be written manually or generated

through meta-programming. Auto-generative learning objects

(AGLOs) are reusable templates that can be instantiated with

random data in order to generate learning content [4], [5]. The

difference between GLOs and AGLOs is the fact that AGLOs:

i) have automatic instantiation in the context of our developed

framework; ii) use random values in the instantiation process,

the values are generated using random seeds but they are

controlled through Mathematical functions.

Students can use AGLOs for learning, training and assess-

ment on a plethora of devices: computers, laptops, tablets

or smartphones etc. in any place they have a minimal speed

Internet connection and at any time. The use of auto-generative

learning objects accelerates the process of learning and train-

ing for the candidate employees in the IT services field.

In this paper we present a set of metamodels which follow a

reusable pattern in the generation of AGLOs usable in learning

operating systems.

The paper is structured as follows. In section II we present

recent related works in the field of learning objects and gen-

erative learning objects. Section III presents the meta-model

of auto-generative learning objects. Section IV presents the

potential of the model in writing operating systems learning

objects. Section V draws the conclusions and sets up the future

work.

II. RELATED WORKS

Generative Learning Objects are considered to be second

generation learning objects consisting in reusable patterns to

be filled with content according to a specific learning objective

[2]. The content can be added manually or generate using

meta-programming techniques.

In [3] is presented a way of generating GLOs from feature

diagrams and meta-programming. The resulted GLOs have

as learning objectives several programing language concepts

taught using Lego robots.

In [9] are presented GLOs that integrate not only soft-

ware components but also hardware ones, namely educational

robots, in their content. The designed GLOs were used in

a project based university course resulting an assimilation

model of theoretical knowledge from the robotics project

implementation.

The AGLO model was applied in several domains:

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 547

• algorithm analysis and design, [4] presents ideas about

how to create AGLOs for learning Prim and Krushkal

graph algorithms;

• data structures and algorithms disciplines [5];

• primary school Arithmetic, [7] presents faction operations

for primary school students;

• operating systems, [8] presents the first steps towards the

development of AGLOs in the IT services sector.

On the other hand, since our paper is about Unix operating

systems we inspired ourselves from several manuals like: [14],

[1], [13] of which we have knowledge that are used in local

IT services companies for job interviews.

III. AUTO-GENERATIVE LEARNING OBJECTS

AGLOs are based on the creation of reusable patterns of

static text and figures and dynamic values and figures or

animations that can be combined freely in order to reach a

planned learning objective.

The structure of the AGLO is presented in Fig. 1:

01 AGLODef ::= "<action>"
Name Scenario [Theory] Question Answers

Feedbacks "</action>"
02 Name ::= "<name>" (ID)* "</name>"
03 Scenario ::= "<scenario>"

[Comment] Symbol* "</scenario>"
04 Comment ::= (ID|CT)*
05 Symbol ::= "<symbol>" SymbolName Type

Expression "</symbol>"
06 SymbolName ::= "<name>" ID "</name>"
07 Type ::= "<type>" ("integer"|"string"|"fraction")

"</type>"
08 Expression ::= "<expr>" Function

"(" ExpressionList ")" "</expr>"
09 Function ::= (element from functions and

operators of JavaScript using random numbers)
10 ExpressionList ::= Expression (, Expression)*
11 Theory ::= "<theory>" (ID)* "</theory>"
12 Question ::= "<question>"(ID| Value)*

"</question>"
13 Value ::= "<value>" "<name>" ID "</name>"

"</value>"
14 Answers ::= "<answer>" (Answer)+ "</answer>"
15 Answer ::= "<answer>" "<id>" INTEGER_LITERAL

"</id>" (ID|Value)* Correctness "</answer>"
16 Correctness ::= "<correct>" ("true" |"false")

"</correct>"
17 Feedbacks ::= "<feedbacks>" (Feedback)

"</feedbacks>"
18 Feedback ::= "<feedback>" (ID)* "</feedback>"

Fig. 1. AGLO Structure

Diving into the AGLO details we designed the following

structure.

Line 01 presents the main elements of an AGLO:

• name - the place where AGLO identification data is

stored;

• scenario - the place where the symbols are defined;

• theory - the place designed to present theoretical infor-

mation about the learning objective;

• question - the place designed for the question to be built;

• answers - the place designed for the one or multiple

answers the student has to give of to choose from;

• feedback - the place where contextual feedback is built

for the student.

Line 02 describes the name element of the AGLO used for

identification.

Lines 03-10 describe the scenario section. Line 03 describes

the scenario as a repetition of symbols accompanied by com-

ments. The comments are used to express in natural language

the role of each symbol and how the entire AGLO works.

Line 04 describes the comment as a sequence of identifiers and

numbers. Line 05 defines the symbol as having three elements:

• name - an identifier to refer later the symbol;

• type - a keyword defined in line 07, the role of the type

is informal, it is used only by the AGLO designer;

• initialization expression - is an expression formed out of

JavaScript functions and operators composition (see lines

08-10).

Line 11 describes the theory element which is formed of

static text for the student to read before performing the exercise

proposed by the current AGLO. Lines 12-13 describe the

question element where static texts denoted by IDs and symbol

values can be found. Symbol values can have text values or

numeric values or they can be other complex structures like:

HTML tables or SVG (Scalable Vector Graphics) graphs etc.

Combining text and symbol values the AGLO will generate

at each runtime different content, namely different questions

with corresponding answers.

Lines 14-16 present the structure of answers which can be

unique or multiple. When the answer is unique the student will

have to fill it in a text field. When the answers are multiple

then the student will see a set of radio boxes or a set of check

boxes depending on the number of true answers.

Lines 17-18 present the feedback elements. In practice it is

very difficult to conceive such feedback models so a general

static text conclusion should suffice.

A. AGLO Design

The design of an AGLO implies several actions as presented

in Fig. 2.

Fig. 2. AGLO Creation

The tutor uses a web browser to edit the AGLO as an

XML file mixed with JavaScript expressions including calls

to domain specific libraries constructors and methods. The

AGLO is stored in a cloud environment which relies on a

web server and a database server. The stored AGLOs are then

548

available to the students organized as a competence tree on

multiple competence levels.

Diving into detail, the conceptual design steps of an AGLO

are as follows:

• to conceive or reuse a concrete exercise from student

assessment tests;

• to write down the solution steps of the exercise;

• to abstract the functional model the exercise, namely

formulas of how variables depend functionally on each

other;

• to select the function variables or symbols that will be

initialized with random values;

• to write the symbols initialization function based on the

random number generator, in this point domain specific

JavaScript [11] libraries may be used or must be written;

• to write the theory section which is designed to be static

text, formulas and images;

• to write the question pattern section where static text is

combined with symbols;

• to write the answer pattern, it can be single text field

or multiple choice, where correct answer computing

symbols must be used;

• to conceive and write the feedback pattern using static

text and symbols in order to provide some insight to the

student for the current exercise.

B. AGLO Instantiation and Usage

Fig. 3. AGLO Usage

In Fig. 3 is presented the instantiation and usage of an

AGLO. The student accesses the AGLO repository through

a web browser. Next, the AGLO Interpreter parses the AGLO

expressed as XML and generates the corresponding concrete

GLO. The AGLO generic pattern is filled with the effective

values of the symbols which were initialized with the result

of the evaluated JavaScript expressions. In this point the

expressions may use domain specific libraries.

For example, if we want to test a Unix command related

to files and folders then we might need to generate a random

folder tree and pick randomly from it one or two nodes in

order to use them in the context of the given command. For

the generation of the folder tree a JavaScript class instantiation

can be used and to select two nodes from the tree we can use

dedicated methods in this sense.

At least one symbol has to compute the correct solution for

the given problem in order to enable the automatic verification

of the answer. Sometimes symbols must be used to compute

distractor variants for the situation in which the multiple

answer schema is used.

AGLOs can also be used in contexts where there is no

computed solution. Such approaches are recommended for the

generation of printed tests that are to be corrected manually

by the tutor.

The representation of the tree can be a simple list of

indented lines in an HTML <pre> or it can be an SVG

representation of a diagram like figure using lines for the

edges, circles for the nodes and texts for the labels. Such a

representation can be used in the text of the question in order

to create the particular instance of the problem.

Further on, the student reads the question which states the

task that he has to solve. The student has to do some reasoning

in order to produce the answer. Depending on the complexity

of the task the student might need to use a paper and a pen

to complete the necessary calculations. Next, the computed

answer is written in a text field or selected from the displayed

choices.

In the last step, the AGLO framework compares the two an-

swers the computer computed one with the student computed

one. If the multiple answer schema was used the it checks

that the correct one was selected. The result is stored using

the xAPI format in the cloud infrastructure [10], [6].

After the response fulfillment a feedback is displayed to the

student as a conclusion of the exercise. Where possible, the

feedback can be used:

• to show the concrete reasoning steps in detail to get the

solution;

• to show the general steps with no specific details at all;

• to show the selected distractor details why is not the

correct answer;

• to show the selected distractor general principle so the

student will understand fully the learning objective and

not fall again in the distractors trap.

IV. UNIX COMMANDS AUTO-GENERATIVE MODELS

The first attempt to imagine and abstract Linux commands

exercises is presented in [8]. There were imagined simple

uses of several Unix commands. Each AGLO is intended

for teaching and training one learning objective, namely one

aspect in using a particular command. The commands that

we considered in our experiment are all dealing with files and

directories or folders. In order to present our generative models

we will use the cat command which concatenates several files

given as arguments to the standard output.

A. Example of Files Concatenation Located in the Current

Directory

The first AGLO example is a simple one, it will train the

student to use the Unix cat command and it serves also for

presenting the AGLO infrastructure. In this example we want

to test that the student knows how to write the command with

two given arguments, representing files in the current working

directory.

549

<scenario>
<text>Generating two file names randomly.</text>
<symbol name="file1" type="Folder">
new Folder(0,null);</symbol>
<symbol name="file2" type="Folder">
new Folder(1,null);</symbol>
<symbol name="sfile1" type="string">
v("file1").toString()+".txt";</symbol>
<symbol name="sfile2" type="string">
v("file2").toString()+".txt";</symbol>
<symbol name="command" type="string">
"cat "+v("sfile1")+" "+v("sfile2");</symbol>

</scenario>

Fig. 4. Example 1 Scenario

In Fig. 4 we present the scenario section of the first AGLO

example. As mentioned in section III the scenario consists in a

set of symbols to be used in the question and answers sections.

The first two symbols we design, named ”file1” and ”file2”,

are two objects of type ”Folder”. This type is a JavaScript class

from the operating systems domain library that we created.

The ”Folder” class models a folder from the Unix file system

and consists in: i) an integer identifier corresponding virtually

to an i-node; ii) an integer index referring the parent node; iii)

an integer index referring the first child node; iv) an integer

index referring the right sibling node; v) a string denoting

the name of the folder. In this example we will use only the

identifier and the name of the folder. The class is equipped

with a ”setRandomName()” method which uses a predefined

array of names concatenated with random numbers from 10

to 99 in order to generate random but distinct names.

Next, we create two symbols ”sfile1” and ”sfile2”, denoting

string representations of the previously created objects and

also concatenating the ”.txt” extension in order to look like

regular text files.

Then, we compute the correct command for the student to

write using the previously defined symbols, consisting in the

name of the command and the two arguments concatenated

all together. In order to access the symbols we use a lookup

function named v(”name”) which returns the symbol’s value

identified by ”name”. This syntactical inconvenience should be

eliminated in the next version of the AGLO interpreter using

an additional preprocessing phase.

In Fig. 5 we present the next infrastructure of our AGLO.

The question is composed out of static text and symbol

values referred using the ”value” XML element. Replacing

the symbol references with different values we obtain different

instances of the same exercise.

In Fig. 6 we see the output of an instantiation: the question

and the computed answer expected to be written by the student.

B. Example of Files Concatenation Referring Relative Paths

In this example we exercise the same cat command using

relative paths.

In Fig. 7 we present a more complicated example where a

student must concatenate two files from a directory tree given

the fact that his current working directory is in a third location.

<question>
<text>
Use the cat command to concatenate
the contents of the file <value name="sfile1"/>
and the contents of the file

<value name="sfile2"/>. The two files are
located in the working directory.
</text>
</question>
<answers>
<answer id="1">
<text>
<value name="command"/>
</text>
</answer>
</answers>

Fig. 5. Example 1 Question and Answer

Use the cat command to concatenate
the contents of the file Alpha07.txt and
the contents of the file Bravo10.txt.
The two files are located in the working
directory.

cat Alpha07.txt Bravo10.txt

Fig. 6. Example 1 Output

<scenario>
<symbol name="n" type="integer">random(5,8,0);
</symbol>

<symbol name="ft" type="FolderTree">
new FolderTree({"nNoOfNodes" : v("n")});</symbol>
<symbol name="st" type="string">
v("ft").toString();</symbol>

<symbol name="folders" type="Array">
v("ft").selectRandomFolders(3);</symbol>

<symbol name="wd" type="Folder">
v("folders")[0];</symbol>
<symbol name="dir1" type="Folder">
v("folders")[1];</symbol>
<symbol name="dir2" type="Folder">
v("folders")[2];</symbol>

<symbol name="file1" type="Folder">
new Folder(0,null);</symbol>
<symbol name="file2" type="Folder">
new Folder(1,null);</symbol>

<symbol name="pathDir1" type="RelativePath">
v("ft").path(v("wd"),v("dir1"));</symbol>
<symbol name="pathDir2" type="RelativePath">
v("ft").path(v("wd"),v("dir2"));</symbol>

<symbol name="command" type="string">
"cat "+v("pathDir1")+"/"+v("file1").name+" "+
v("pathDir2")+"/"+v("file2");</symbol>
</scenario>

Fig. 7. Example 2 Scenario

The student has to determine the relative paths in order to refer

the files.

For such a scenario a randomly generated folder tree is

needed. In this sense we instantiated the ”FolderTree” class,

550

in ”ft” symbol, which builds a consistent directory tree having

”n” nodes of random names. The number of nodes for the tree

is between 5 and 8 and it is denoted by symbol ”n”.

Next, the ”ft” textual representation is computed into sym-

bol ”st”.

From the computed folder tree we extract randomly 3

folders using the method ”selectRandomFolders(3)”.

The first one will play the role of current working directory

denoted by symbol ”wd”.

The other two will play the role of the files to be concate-

nated denoted by symbols ”dir1” and ”dir2”.

Then, we create two file names ”file1” and respectively

”file2” that will be located in ”dir1” and respectively in ”dir2”.

Next we use the FolderTree method named

”path(cwd,path1)”, which computes the relative path of

”path1” relative to the current working directory ”cwd”. This

method is applied for both ”dir1” and ”dir2”.

Finally, the concatenation command is assembled from the

computed symbols.

Use the cat command to concatenate the
contents of the file Alpha28 and the
contents of the file November40. You
are in the directory Romeo20, the file
Alpha28 is in the directory Mike43 and
the file November40 is in the directory
Delta58.
The directory hierarchy is in the following
figure:
Foxtrot12
*Golf99
*Delta58
*Romeo99
**Sierra40
**Mike43
***Romeo20

cat ../../../Romeo99/Mike43/Alpha28
../../../Delta58/November40

Fig. 8. Example 2 Output

In Fig. 8 we present the output of the instantiated AGLO

from second example. Since we are located in directory

”Romeo20” we need to descend three levels to ”Foxtrot12”

and then to access ”Romeo99” and finally ”Mike43” where

file ”Alpha28” is located. For the second file we need to

descend the same three levels and to access ”Delta58” where

file ”November40” is located

C. Generative Models for Other Unix Commands

The presented ideas can be extended to other Unix com-

mands working with files. Several scenarios are imagined

as follows. The change mode chmod command may use

immediate, absolute and relative files. Additionally, the use

of i) permission rights ”r”, ”w”, ”x”; ii) targets ”u”, ”g”, ”o”,

”a”; iii) operators ”+”, ”-”, ”=” can be combined and exercised.

Similarly, copy cp, the move mv, the link ln, remove

rm, list ls commands can be exercised on the following

dimensions: i) files and folders; ii) immediate, absolute and

relative paths; iii) name patterns.

D. Prototype Implementation

The implementation of the prototype is cloud based. The

AGLOs are expressed as XML text files and are stored in the

cloud. The AGLO interpreter is written entirely in JavaScript

[11] using jQuery library [12] and runs on the client side in

common web browsers. On the server side we find PHP code

for managing the student responses using xAPI model [10],

[6].

V. CONCLUSIONS AND PERSPECTIVES

We conclude that it is possible to design and write AGLO

models where two different aspects were composed: i) com-

mands on one hand denoting the action and ii) files and folders

on the other hand denoting the target objects.

The complexity of the AGLOs is somehow hidden in

the JavaScript domain libraries. Having powerful and well

documented domain specific libraries enables the creation of

AGLOs.

The AGLO XML format is simple and flexible allowing

non-programmers to adjust the presentation, e.g. they can reuse

the AGLO by translating the text in a different language.

As future work we intend to develop more complex Unix

scenarios in the sector of disks, partitions, volumes and

towards batch commands, shell scripts which are highly used

in the industry.

Another future work is to create a visual interface for editing

static and dynamic content with 2-3 panels where different

instantiations are visible.

REFERENCES

[1] Wander Boessenkool, Bruce Wolfe, Scott McBrien, George Hacker, and
Chen Chang. Red Hat System Administration II Student Workbook.
RedHat, Inc., 2014.

[2] Tom Boyle. The design and development of second generation learning
objects. In World Conference on Educational Multimedia, Hypermedia

& Telecommunications, Orlando, Florida, June 28 2006.

[3] Renata Burbaite, Kristina Bespalova, Robertas Damasevicius, and Vy-
tautas Stuikys. Context-aware generative learning objects for teaching
computer science. International Journal of Engineering Education,
30(4):929–936, 2014.

[4] Ciprian-Bogdan Chirila. Auto-generative learning objects for it disci-
plines. In Proceedings of the International Conference on Virtual Learn-

ing 2015, pages 1–6, Bucharest, Romania, October 2015. University of
Bucharest, Romania.

[5] Ciprian-Bogdan Chirila. Auto-generative learning objects in online
assessment of data structures disciplines. BRAIN - Broad Research in

Artificial Intelligence and Neuroscience, 8(1):24–34, April 2017.

[6] Ciprian-Bogdan Chirila. Towards the enhancement of aglos with scorm
and xapi. In Proceedings of the 13-th International Scientific Conference

eLearning and Software for Education, pages 1–7, Bucharest, Romania,
April 2017.

[7] Felicia-Mirabela Costea, Ciprian-Bogdan Chirila, and Vladimir Creţu.
Auto-generative learning objects for middle school arithmetic. In
Proceedings of the 14-th International Scientific Conference eLearning

and Software for Education, pages 1–8, Bucharest, Romania, April 2018.
[8] Felicia-Mirabela Costea, Ciprian-Bogdan Chirila, and Vladimir Creţu.

Towards auto-generative learning objects for industrial it services.
In Proceedings of the IEEE 12-th International Symposium on Ap-

plied Computational Intelligence and Informatics (SACI), pages 1–5,
Timisoara, Romania, May 2018.

[9] Robertas Damasevicius, Lina Narbutaite, Ignas Plauska, and Tomas
Blazauskas. Advances in the use of educational robots in project-
based teaching. TEM Journal - Technology Education Management

Informatics, 6(2):342–348, May 2017.

551

[10] Advanced Distributed Learning Initiative. Experience api (xapi).
http://adlnet.gov/adl-research/performance-tracking-analysis/experience-
api/, 2017.

[11] ECMA International. Standard ecma-262 ecmascript
2016 language specification. http://www.ecma-
international.org/publications/standards/Ecma-262.htm, 2016.

[12] The jQuery Foundation. jquery project. https://www.jquery.com, 2018.
[13] Susan Lauber, Philip Sweany, Rudolf Kastl, and George Hacker. Red

Hat System Administration I Student Workbook. RedHat, Inc., 2014.
[14] Eric Steven Raymond. The Art of Unix Programming. Addison-Wesley,

2003.

552

